| Surname       | Centre<br>Number | Candidate<br>Number |
|---------------|------------------|---------------------|
| First name(s) |                  | 2                   |



#### GCE AS/A LEVEL

2410U10-1

### **TUESDAY, 16 MAY 2023 - MORNING**

### CHEMISTRY - AS unit 1

The Language of Chemistry, Structure of Matter and Simple Reactions

1 hour 30 minutes

Section A **Section B** 

#### **ADDITIONAL MATERIALS**

In addition to this examination paper, you will need a:

- · calculator:
- Data Booklet supplied by WJEC.

| <b>INSTRUCTI</b> | ONS TO | <b>CANDIDATES</b> |
|------------------|--------|-------------------|
|                  |        |                   |

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions.

Section B Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

#### INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The assessment of the quality of extended response (QER) will take place in **Q.7**(a).



12 12

Mark

Awarded

10. 15 11. 21 **Total** 80

For Examiner's use only

Maximum

Mark

10

10

Question

1. to 6.

7.

8.

9.

| C | F | C   | ΓI |    | N   | Λ                |
|---|---|-----|----|----|-----|------------------|
|   |   | C I |    | U. | IVI | $\boldsymbol{H}$ |

Answer all questions.

Complete the table below.

[2]

| Molecule          | Number of bonding pairs of electrons in outer shell | Number of lone pairs of electrons in outer shell | Shape     |
|-------------------|-----------------------------------------------------|--------------------------------------------------|-----------|
| BeCl <sub>2</sub> | 2                                                   | 0                                                |           |
| PCI <sub>3</sub>  |                                                     |                                                  | pyramidal |

Complete the table below to show the type or types of bonding present in the following solids.

Solid Type or types of bonding calcium iodine

| 3. | Give the oxidation number of rhenium in ReOCl <sub>4</sub> . | [1 |
|----|--------------------------------------------------------------|----|
|    |                                                              |    |

Examiner only

1]

- (a) On the diagram, draw an arrow to represent the transition corresponding to the ionisation of the atom. Label this arrow **A**. [1]
- (b) On the diagram, draw an arrow to represent the transition corresponding to the first line in the visible region in the atomic spectrum. Label this arrow **B**. [1]
- 5. A student said that  $^{32}_{16}S^{2-}$  and  $^{40}_{20}Ca^{2+}$  have the same electronic configuration.

Do you agree? Give a reason for your answer. [1]

**6.** Copper can be extracted from copper(II) oxide using hydrogen.

If the atom economy for this reaction is 78% and 4.2g of copper is formed, calculate the total mass of the reactants. [2]

Mass of reactants = ......g

10

© WJEC CBAC Ltd. (2

Turn over.

#### **SECTION B**

#### Answer all questions.

**7.** (a) The boiling temperatures of the hydrides of some Group 4 and Group 7 elements are shown in the table below.

| Group 4<br>hydride | Boiling temperature / °C | Group 7<br>hydride | Boiling temperature / °C |
|--------------------|--------------------------|--------------------|--------------------------|
| CH <sub>4</sub>    | -161                     | HF                 | 20                       |
| SiH <sub>4</sub>   | -112                     | HCI                | -85                      |
| GeH <sub>4</sub>   | -88                      | HBr                | -66                      |

Hydrogen has an electronegativity value of 2.1.

The electronegativity values of the Group 4 and Group 7 elements are given below.

| Element | Electronegativity | Element | Electronegativity |
|---------|-------------------|---------|-------------------|
| С       | 2.5               | F       | 4.0               |
| Si      | 1.8               | CI      | 3.0               |
| Ge      | 1.8               | Br      | 2.8               |



Examiner only

PMT

| •                                       | explain any difference present. | s in boiling te | mperature in te | erms of the int | ermolecul |
|-----------------------------------------|---------------------------------|-----------------|-----------------|-----------------|-----------|
|                                         | present.                        |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
| *************************************** |                                 |                 |                 |                 | ••••••    |
|                                         |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
| •••••                                   |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
| •••••                                   |                                 |                 |                 |                 |           |
| ••••                                    |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
| *************************************** |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
| •••••                                   |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |
|                                         |                                 |                 |                 |                 |           |



© WJEC CBAC Ltd. (2410U10-1) Turn over.

4100101

|     | CH <sub>4</sub> +Cu <sub>2</sub> O →Cu +CO <sub>2</sub> +H <sub>2</sub> O                                                                                                                                            | )   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (i) Balance the equation.                                                                                                                                                                                            | [1] |
|     | (ii) Explain why this reaction is described as a redox process.                                                                                                                                                      | [1] |
| (c) | Compounds containing a Group 1 metal, a Group 3 metal and hydrogen only are kas complex metal hydrides. There has been much interest in their use as hydrogen storage systems for future fuel cell-powered vehicles. |     |
|     | One such hydride contains 38.7% Li and 50.1% Al.                                                                                                                                                                     |     |
|     | Find the empirical formula of this compound.                                                                                                                                                                         | [2] |
|     |                                                                                                                                                                                                                      |     |
|     |                                                                                                                                                                                                                      |     |
|     |                                                                                                                                                                                                                      |     |
|     |                                                                                                                                                                                                                      |     |
|     |                                                                                                                                                                                                                      |     |
|     | Empirical formula                                                                                                                                                                                                    |     |



Using outer electrons only, draw a dot and cross diagram to show the bonding in aluminium oxide.

[2]

Aluminium also reacts with chlorine to form aluminium chloride. (b)

A 0.400 g sample of aluminium chloride was heated to 220 °C. The vapour produced occupied a volume of 60.8 cm<sup>3</sup> at a pressure of 101 kPa.

Show that the molecular formula of aluminium chloride in the vapour is Al<sub>2</sub>Cl<sub>6</sub>.

[4]



| (c) (i)                 | Sketch a graph of log (ionisation energy) for the successive ionisations of aluminium. |     |
|-------------------------|----------------------------------------------------------------------------------------|-----|
|                         | The first and last points have been plotted for you.                                   | [1] |
|                         | ×                                                                                      |     |
| (day)                   |                                                                                        |     |
| loa (ionisation enerav) |                                                                                        |     |
| od (ionis               |                                                                                        |     |
| <u> </u>                | ×                                                                                      |     |
|                         | 1 2 3 4 5 6 7 8 9 10 11 12 13                                                          |     |
|                         | Number of electron removed                                                             |     |
| (ii)                    | I. Explain the general slope of the graph.                                             | [1] |
|                         |                                                                                        |     |
|                         | II. Explain the reason for any sharp changes in the graph.                             | [1] |
|                         |                                                                                        |     |
|                         |                                                                                        |     |
|                         |                                                                                        |     |
|                         |                                                                                        |     |
|                         |                                                                                        |     |



| (d) |                  | ough aluminium has 25 known isotopes only two of them occur naturally. These are which is stable and <sup>26</sup> Al which is radioactive.              | Exami<br>only |
|-----|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|     | <sup>26</sup> Al | decays by electron capture and its half-life is $7.2 \times 10^5$ years.                                                                                 |               |
|     | (i)              | Give the mass number and symbol of the species produced when an atom of <sup>26</sup> Al decays. [1]                                                     |               |
|     | (ii)             | If 8.0 mg of $^{26}$ Al decays by electron capture, calculate the mass in <b>grams</b> of $^{26}$ Al left after 2.88 $\times$ 10 <sup>6</sup> years. [2] |               |
|     |                  |                                                                                                                                                          |               |
|     |                  | Mass = g                                                                                                                                                 |               |
|     |                  | Wass = 9                                                                                                                                                 |               |
|     |                  |                                                                                                                                                          | 40            |
|     |                  |                                                                                                                                                          | 12            |
|     |                  |                                                                                                                                                          |               |
|     |                  |                                                                                                                                                          |               |
|     |                  |                                                                                                                                                          |               |
|     |                  |                                                                                                                                                          |               |
|     |                  |                                                                                                                                                          |               |
|     |                  |                                                                                                                                                          |               |
|     |                  |                                                                                                                                                          |               |
|     |                  |                                                                                                                                                          |               |



Turn over.

| Examiner |
|----------|
| only     |

9. (a) Over 180 million tonnes of ammonia are manufactured each year.

The main use of ammonia is in the production of salts such as ammonium sulfate, which is used as a fertiliser.

$$2NH_3 + H_2SO_4 \longrightarrow (NH_4)_2SO_4$$

Explain why this is an acid-base reaction.

water as shown in the equation below.

[1]

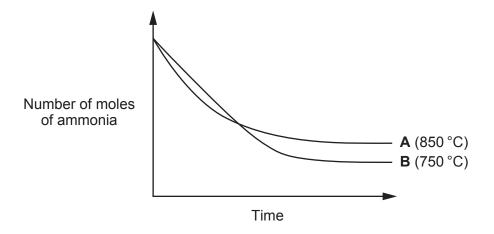
(b) Sodium hydroxide reacts with ammonium sulfate to form ammonia, sodium sulfate and

$$(NH_4)_2SO_4 + 2NaOH \longrightarrow 2NH_3 + Na_2SO_4 + 2H_2O$$

A 1.86 g sample of ammonium sulfate was neutralised by exactly  $26.70\,\mathrm{cm^3}$  of a sodium hydroxide solution.

Calculate the concentration, in mol dm<sup>-3</sup>, of the sodium hydroxide solution used. [3]

Concentration = ..... mol dm<sup>-3</sup>




© WJEC CBAC Ltd.

Another use of ammonia is in the production of nitric acid. In the first part of this process ammonia is oxidised in air.

$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$

The graph below shows how the number of moles of ammonia present changes as the reaction proceeds until equilibrium is reached.



| (i)  | State Le Chatelier's principle.                                                        | [1] |
|------|----------------------------------------------------------------------------------------|-----|
|      |                                                                                        |     |
|      |                                                                                        |     |
| (ii) | A student looked at curves <b>A</b> and <b>B</b> and said that the forward reaction is |     |

Is he correct? Justify your answer by using Le Chatelier's principle. [2]

(iii) On the graph, draw a curve that represents the reaction at 850 °C but with a catalyst added to the reaction mixture.

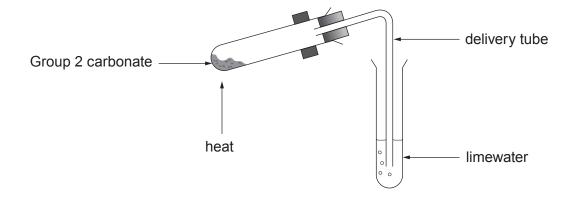
(2410U10-1)

Label this curve **C**. Explain the shape of the curve. [2]



exothermic.

| (d) | A solution of nitric acid has a concentration of 0.0550 mol dm <sup>-3</sup> . |     |
|-----|--------------------------------------------------------------------------------|-----|
|     | Calculate its pH.                                                              | [1] |
|     |                                                                                |     |
|     |                                                                                |     |
|     | pH =                                                                           |     |
|     | r · · · · · · · · · · · · · · · · · · ·                                        |     |
| (e) | A student said that the bonds in an ammonia molecule are not purely covalent.  |     |
|     | Explain why she is correct.                                                    | [2] |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |
|     |                                                                                |     |




## **BLANK PAGE**

# PLEASE DO NOT WRITE ON THIS PAGE



**10.** (a) A student investigated the thermal stability of Group 2 carbonates. She used the following apparatus and method.



- 1. Start a stopwatch at the moment you begin to heat the carbonate and continue to heat for 4 minutes or until the limewater turns cloudy.
- 2. After the limewater turns cloudy lift the delivery tube out of the limewater then remove the flame from under the boiling tube.
- 3. Repeat the heating procedure for each carbonate in turn.
- 4. Use a spatula-measure of the appropriate carbonate, fresh limewater and heat with the hottest Bunsen burner flame each time.

Her results are shown below.

| Carbonate         | Time taken for limewater to turn cloudy/s |
|-------------------|-------------------------------------------|
| MgCO <sub>3</sub> | 20                                        |
| CaCO <sub>3</sub> | 40                                        |
| SrCO <sub>3</sub> | 230                                       |
| BaCO <sub>3</sub> | does not turn cloudy                      |



| (iii) Suggest why the delivery tube should be lifted out of the limewater before the flame is removed from under the boiling tube.  (iii) State what conclusion she can draw about the thermal stabilities of the Group 2 carbonates from these results.  (iv) The student was told that the temperature at which barium carbonate decomposes is 1360 °C. The maximum temperature of a typical Bunsen burner flame is around 800 °C.  State whether the limewater would have turned cloudy if she had used two Bunsen burners to heat the barium carbonate. Give a reason for your answer.  [1] | flame is removed from under the boiling tube.  (iii) State what conclusion she can draw about the thermal stabilities of the Group 2 carbonates from these results.  (iv) The student was told that the temperature at which barium carbonate decomposes is 1360 °C. The maximum temperature of a typical Bunsen burner flame is around 800 °C.  State whether the limewater would have turned cloudy if she had used two | (i)   | Suggest an improvement to the method to ensure that the experiment is a fair test.                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (iv) The student was told that the temperature at which barium carbonate decomposes is 1360 °C. The maximum temperature of a typical Bunsen burner flame is around 800 °C.  State whether the limewater would have turned cloudy if she had used two                                                                                                                                                                                                                                                                                                                                            | (iv) The student was told that the temperature at which barium carbonate decomposes is 1360 °C. The maximum temperature of a typical Bunsen burner flame is around 800 °C.  State whether the limewater would have turned cloudy if she had used two                                                                                                                                                                      | (ii)  |                                                                                                                                                                             |
| decomposes is 1360 °C. The maximum temperature of a typical Bunsen burner flame is around 800 °C.  State whether the limewater would have turned cloudy if she had used two                                                                                                                                                                                                                                                                                                                                                                                                                     | decomposes is 1360 °C. The maximum temperature of a typical Bunsen burner flame is around 800 °C.  State whether the limewater would have turned cloudy if she had used two                                                                                                                                                                                                                                               | (iii) | · · · · · · · · · · · · · · · · · · ·                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                           | (iv)  | decomposes is 1360 °C. The maximum temperature of a typical Bunsen burner flame is around 800 °C.  State whether the limewater would have turned cloudy if she had used two |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                           |       |                                                                                                                                                                             |



| ) Bar | um nitrate also decomposes on heating.                                                                                                                                                  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | $2Ba(NO_3)_2(s)$ $\longrightarrow$ $2BaO(s) + 4NO_2(g) + O_2(g)$                                                                                                                        |
| (i)   | In an experiment 0.960 g of barium nitrate was heated strongly for 2 minutes.                                                                                                           |
|       | Calculate the maximum volume, in cm <sup>3</sup> , of gas that could be produced at a temperature of 25 °C and a pressure of 1 atm.                                                     |
|       |                                                                                                                                                                                         |
|       |                                                                                                                                                                                         |
|       |                                                                                                                                                                                         |
|       |                                                                                                                                                                                         |
|       |                                                                                                                                                                                         |
|       |                                                                                                                                                                                         |
|       | Volume = cn                                                                                                                                                                             |
| (ii)  |                                                                                                                                                                                         |
| (11)  | The volume of a gas is directly proportional to its temperature at constant pressure.                                                                                                   |
| ()    |                                                                                                                                                                                         |
| ()    | A student said that if the gas formed in this experiment were collected at a temperature of 50 °C and at 1 atm pressure, the volume formed would be double that calculated in part (i). |
| (")   | temperature of 50 °C and at 1 atm pressure, the volume formed would be double                                                                                                           |



| (c)   | State the conditions necessary for <b>each</b> of barium oxide and barium metal to conduct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Examin<br>only |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| (-)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3]             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| ••••• |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| ••••• |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| (d)   | The atomic radius of a barium atom is 0.217 nm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       | From the list below, choose the value for the <b>ionic</b> radius of a barium ion. Give a reaso for your choice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n<br>2]        |
|       | 0.135 nm 0.210 nm 0.217 nm 0.265 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| (-)   | A considerable soft and the state of the sta |                |
| (e)   | A sample of barium contains two isotopes. The first isotope has a relative isotopic mas of 134.9 and the second a relative isotopic mass of 137.9. The relative atomic mass of the sample of barium is 137.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S              |
|       | Calculate the percentage abundance of the first isotope.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2]             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|       | Abundance =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %              |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15             |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |



Examiner only

**11.** Seawater contains a number of dissolved salts. Although composition varies with location,  $1\,000\,\mathrm{cm^3}$  of seawater contains about 20 g of chloride ions,  $\mathrm{Cl^-}$ , and about 3 g of sulfate ions,  $\mathrm{SO_4^{2^-}}$ .

A student is given a sample of seawater from Rhossili Bay and asked to determine the chloride ion content by volumetric analysis and the sulfate ion content by gravimetric analysis.

(a) Determination of chloride ion content by volumetric analysis.

The method is similar to an acid-base titration. A silver nitrate solution of known concentration is used to precipitate chloride ions as silver chloride.

$$Ag^{+}(aq) + Cl^{-}(aq) \longrightarrow AgCl(s)$$

The seawater is diluted by a factor of five before it is used in the titration.

The endpoint of this titration is difficult to determine directly, so potassium chromate(VI),  $K_2CrO_4$ , is used as an indicator. When all of the chloride ions have been used up, the chromate(VI) ions react with silver ions and produce silver chromate(VI), which forms a red precipitate. The instant a permanent red tinge appears in the solution, the endpoint has been reached.

Volume of diluted seawater in the conical flask = 25.0 cm<sup>3</sup>

Concentration of silver nitrate solution in the burette = 0.100 mol dm<sup>-3</sup>

Mean titre =  $26.40 \, \text{cm}^3$ 

| (i)      | Before starting the titration, the student rinses the burette with silver nitrate solution. Suggest why he does this. | [1] |
|----------|-----------------------------------------------------------------------------------------------------------------------|-----|
|          | Suggest why the student dilutes the segurator                                                                         | [1] |
| (ii)<br> | Suggest why the student dilutes the seawater.                                                                         |     |



© WJEC CBAC Ltd.

| Describe how the student should dilute the seawater by a factor of five. [3]                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
| Describe and explain <b>one</b> action the student might take just before the endpoint of the titration, to ensure that the volume of silver nitrate added at the endpoint is accurate. [2] |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
| Write an ionic equation for the precipitation of silver chromate(VI). [1]                                                                                                                   |
| Calculate the mass of chloride ions in 1000 cm <sup>3</sup> of the original seawater, giving your answer to an <b>appropriate</b> number of significant figures. [4                         |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |
|                                                                                                                                                                                             |



|       | 2 4                                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------|
|       | cm <sup>3</sup> of undiluted seawater and 0.100 mol dm <sup>-3</sup> barium nitrate solution were used.            |
| The   | mass of the barium sulfate precipitate was 0.65g.                                                                  |
| You   | may assume that <b>all</b> of the sulfate ions in the seawater were precipitated.                                  |
| (i)   | Describe how the student carried out the gravimetric analysis to find the mass of the barium sulfate precipitated. |
| ••••• |                                                                                                                    |
|       |                                                                                                                    |
| ••••• |                                                                                                                    |
|       |                                                                                                                    |
|       |                                                                                                                    |
| ••••• |                                                                                                                    |
| ••••• |                                                                                                                    |
| ••••• |                                                                                                                    |
|       |                                                                                                                    |
|       |                                                                                                                    |
|       |                                                                                                                    |
|       |                                                                                                                    |
|       |                                                                                                                    |
|       |                                                                                                                    |



|        |                                                                                                                                                                     | E               |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| (ii)   | Calculate the minimum volume, in cm <sup>3</sup> , of barium nitrate solution needed to precipitate all of the sulfate ions in 100 cm <sup>3</sup> of the seawater. | [3]             |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        | Volume =                                                                                                                                                            | cm <sup>3</sup> |
| (iii)  | Suggest why the volume of barium nitrate needed was different to the volume                                                                                         | of              |
|        | seawater used.                                                                                                                                                      | [1]             |
| •····· |                                                                                                                                                                     |                 |
| •••••  |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        | END OF PAPER                                                                                                                                                        |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     | 1               |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |
|        |                                                                                                                                                                     |                 |



Turn over.

| Question number | Additional page, if required.<br>Write the question number(s) in the left-hand margin. | Examiner only |
|-----------------|----------------------------------------------------------------------------------------|---------------|
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |



| Question number | Additional page, if required.<br>Write the question number(s) in the left-hand margin. | Examiner only |
|-----------------|----------------------------------------------------------------------------------------|---------------|
|                 |                                                                                        | 1             |
|                 |                                                                                        | 1             |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        | 1             |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        |               |
|                 |                                                                                        | 1             |
|                 |                                                                                        |               |





# PLEASE DO NOT WRITE ON THIS PAGE

